Search results

Search for "thermal stress" in Full Text gives 10 result(s) in Beilstein Journal of Nanotechnology.

Process-specific mechanisms of vertically oriented graphene growth in plasmas

  • Subrata Ghosh,
  • Shyamal R. Polaki,
  • Niranjan Kumar,
  • Sankarakumar Amirthapandian,
  • Mohamed Kamruddin and
  • Kostya (Ken) Ostrikov

Beilstein J. Nanotechnol. 2017, 8, 1658–1670, doi:10.3762/bjnano.8.166

Graphical Abstract
  • with increasing growth temperature. The residual stress is described as internal stress in nanostructured materials. The generation of residual stress during growth can be attributed to: (i) thermal stress, which occurs because of the difference in thermal expansion coefficient between the substrate
PDF
Album
Full Research Paper
Published 10 Aug 2017

Vapor-phase-synthesized fluoroacrylate polymer thin films: thermal stability and structural properties

  • Paul Christian and
  • Anna Maria Coclite

Beilstein J. Nanotechnol. 2017, 8, 933–942, doi:10.3762/bjnano.8.95

Graphical Abstract
  • iCVD were investigated with the aim of identifying the limit of thermal stress that these films can sustain before losing integrity. PFDA polymers have indeed shown very interesting properties in terms of repellence of oil and water, due to the formation of a crystalline lamellar structure between the
  • stability can be greatly improved by the addition of a cross-linker. When the linear p-PFDA was exposed to the heating cycles, the chemistry remained unchanged while the crystallinity of the films was largely improved and the morphological character of the surface became smoother. Nevertheless, the thermal
  • stress caused some ruptures in the films and reduced the hydrophobic properties. EGDMA, added as a cross-linker, was shown to preserve the chemical stability and hydrophobicity of p-PFDA coatings while making the film more cohesive. The loss of the structural integrity in the PFDA homopolymer was
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2017

Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers

  • Rasheed Atif and
  • Fawad Inam

Beilstein J. Nanotechnol. 2016, 7, 1174–1196, doi:10.3762/bjnano.7.109

Graphical Abstract
  • the folds through intersheet adhesion [21][22]. Under thermal stress and external loading, the individual layers of graphene undergo crumpling [23][24], scrolling [25][26], folding [27][28], rippling [29][30], and out-of-plane wrapping [31][32], making graphene suitable to enhance the performance of
PDF
Album
Full Research Paper
Published 12 Aug 2016

Efficiency improvement in the cantilever photothermal excitation method using a photothermal conversion layer

  • Natsumi Inada,
  • Hitoshi Asakawa,
  • Taiki Kobayashi and
  • Takeshi Fukuma

Beilstein J. Nanotechnol. 2016, 7, 409–417, doi:10.3762/bjnano.7.36

Graphical Abstract
  • cantilever oscillation is excited by thermal stress induced by the irradiated laser beam [21]. Owing to the direct excitation of the cantilever, excitation of the spurious resonances is negligible [22]. However, the photothermal excitation method has the disadvantage of low excitation efficiency. Due to the
PDF
Album
Supp Info
Full Research Paper
Published 10 Mar 2016

Dependence of lattice strain relaxation, absorbance, and sheet resistance on thickness in textured ZnO@B transparent conductive oxide for thin-film solar cell applications

  • Kuang-Yang Kou,
  • Yu-En Huang,
  • Chien-Hsun Chen and
  • Shih-Wei Feng

Beilstein J. Nanotechnol. 2016, 7, 75–80, doi:10.3762/bjnano.7.9

Graphical Abstract
  • as a function of thickness, t: compressive strain for t < 5.5 nm, released compressive strain due to generation of misfit dislocations for 5.5 nm < t < 200 nm, tensile strain due to thermal stress for 200 nm < t < 500 nm, and residual tensile strain relaxed by microcrack formation for t > 500 nm [10
PDF
Album
Full Research Paper
Published 20 Jan 2016

Simulation of thermal stress and buckling instability in Si/Ge and Ge/Si core/shell nanowires

  • Suvankar Das,
  • Amitava Moitra,
  • Mishreyee Bhattacharya and
  • Amlan Dutta

Beilstein J. Nanotechnol. 2015, 6, 1970–1977, doi:10.3762/bjnano.6.201

Graphical Abstract
  • employs the method of atomistic simulation to estimate the thermal stress experienced by Si/Ge and Ge/Si, ultrathin, core/shell nanowires with fixed ends. The underlying technique involves the computation of Young’s modulus and the linear coefficient of thermal expansion through separate simulations
  • . These two material parameters are combined to obtain the thermal stress on the nanowires. In addition, the thermally induced stress is perceived in the context of buckling instability. The analysis provides a trade-off between the geometrical and operational parameters of the nanostructures. The
  • proposed methodology can be extended to other materials and structures and helps with the prediction of the conditions under which a nanowire-based device might possibly fail due to elastic instability. Keywords: atomistic simulation; buckling; core–shell nanowire; thermal stress; Introduction In recent
PDF
Album
Full Research Paper
Published 02 Oct 2015

Multiscale modeling of lithium ion batteries: thermal aspects

  • Arnulf Latz and
  • Jochen Zausch

Beilstein J. Nanotechnol. 2015, 6, 987–1007, doi:10.3762/bjnano.6.102

Graphical Abstract
  • coupled transport on the microscale and analyzing all heat sources in the bulk and the interfaces. Since heat sources lead to thermal stress, there are possible sources for degradation on the microscale that cannot be detected on the macroporous scale. The cancelation also demonstrates the importance of a
PDF
Album
Full Research Paper
Published 20 Apr 2015

Spontaneous dissociation of Co2(CO)8 and autocatalytic growth of Co on SiO2: A combined experimental and theoretical investigation

  • Kaliappan Muthukumar,
  • Harald O. Jeschke,
  • Roser Valentí,
  • Evgeniya Begun,
  • Johannes Schwenk,
  • Fabrizio Porrati and
  • Michael Huth

Beilstein J. Nanotechnol. 2012, 3, 546–555, doi:10.3762/bjnano.3.63

Graphical Abstract
  • (Figure 4b) for the sample grown on the plasma-activated silica. The samples grown under pre-irradiation conditions are unstable under thermal stress and could not be measured below room temperature. The temperature-dependent resistivity shows a typical metallic behavior as expected for a dirty metal
PDF
Album
Full Research Paper
Published 25 Jul 2012

Mesoporous MgTa2O6 thin films with enhanced photocatalytic activity: On the interplay between crystallinity and mesostructure

  • Jin-Ming Wu,
  • Igor Djerdj,
  • Till von Graberg and
  • Bernd M. Smarsly

Beilstein J. Nanotechnol. 2012, 3, 123–133, doi:10.3762/bjnano.3.13

Graphical Abstract
  • during the EISA procedure and hence helps to stabilize the ordered mesopores even after the template has been removed [15][16][17][18][19]. In addition, the randomly distributed round concaves also possibly aid the release of thermal stress, thus helping to maintain the ordered mesopores up to
PDF
Album
Supp Info
Video
Full Research Paper
Published 13 Feb 2012

Template-assisted formation of microsized nanocrystalline CeO2 tubes and their catalytic performance in the carboxylation of methanol

  • Jörg J. Schneider,
  • Meike Naumann,
  • Christian Schäfer,
  • Armin Brandner,
  • Heiko J. Hofmann and
  • Peter Claus

Beilstein J. Nanotechnol. 2011, 2, 776–784, doi:10.3762/bjnano.2.86

Graphical Abstract
  • thin ceria film interconnects the microsized ceria tubes. A combined process of plasma etching and calcination was chosen to remove the PMMA template material, avoiding thermal stress. The obtained highly crystalline 1-D ceria materials show a high activity in the direct carboxylation of methanol to
PDF
Album
Full Research Paper
Published 30 Nov 2011
Other Beilstein-Institut Open Science Activities